Expression Manipulation

Symbolics.jl provides functionality for easily manipulating expressions. Most of the functionality comes by the expression objects obeying the standard mathematical semantics. For example, if one has A a matrix of symbolic expressions wrapped in Num, then A^2 calculates the expressions for the squared matrix. It is thus encouraged to use standard Julia for performing many of the manipulation on the IR. For example, calculating the sparse form of the matrix via sparse(A) is valid, legible, and easily understandable to all Julia programmers.

Functionality Inherited From SymbolicUtils.jl

SymbolicUtils.substituteFunction
substitute(expr, s)

Performs the substitution on expr according to rule(s) s.

Examples

julia> @variables t x y z(t)
4-element Vector{Num}:
    t
    x
    y
 z(t)
julia> ex = x + y + sin(z)
(x + y) + sin(z(t))
julia> substitute(ex, Dict([x => z, sin(z) => z^2]))
(z(t) + y) + (z(t) ^ 2)
source
SymbolicUtils.simplifyFunction
simplify(x; expand=false,
            threaded=false,
            thread_subtree_cutoff=100,
            rewriter=nothing)

Simplify an expression (x) by applying rewriter until there are no changes. expand=true applies expand in the beginning of each fixpoint iteration.

By default, simplify will assume denominators are not zero and allow cancellation in fractions. Pass simplify_fractions=false to prevent this.

source

Documentation for rewriter can be found here, using the @rule macro or the @acrule macro from SymbolicUtils.jl.

Additional Manipulation Functions

Other additional manipulation functions are given below.

Symbolics.get_variablesFunction
get_variables(O) -> Vector{BasicSymbolic}

Returns the variables in the expression. Note that the returned variables are not wrapped in the Num type.

Examples

julia> @variables t x y z(t)
4-element Vector{Num}:
    t
    x
    y
 z(t)

julia> ex = x + y + sin(z)
(x + y) + sin(z(t))

julia> Symbolics.get_variables(ex)
3-element Vector{Any}:
 x
 y
 z(t)
source
Symbolics.tosymbolFunction
tosymbol(x::Union{Num,Symbolic}; states=nothing, escape=true) -> Symbol

Convert x to a symbol. states are the states of a system, and escape means if the target has escapes like val"y(t)". If escape is false, then it will only output y instead of y(t).

Examples

julia> @variables t z(t)
2-element Vector{Num}:
    t
 z(t)

julia> Symbolics.tosymbol(z)
Symbol("z(t)")

julia> Symbolics.tosymbol(z; escape=false)
:z
source
Symbolics.diff2termFunction
diff2term(x) -> Symbolic

Convert a differential variable to a Term. Note that it only takes a Term not a Num.

julia> @variables x t u(x, t) z(t)[1:2]; Dt = Differential(t); Dx = Differential(x);

julia> Symbolics.diff2term(Symbolics.value(Dx(Dt(u))))
uˍtx(x, t)

julia> Symbolics.diff2term(Symbolics.value(Dt(z[1])))
var"z(t)[1]ˍt"
source
Symbolics.solve_forFunction
solve_for(eq, var; simplify, check) -> Any

Solve equation(s) eqs for a set of variables vars.

Assumes length(eqs) == length(vars)

Currently only works if all equations are linear. check if the expr is linear w.r.t vars.

Examples

julia> @variables x y
2-element Vector{Num}:
 x
 y

julia> Symbolics.solve_for(x + y ~ 0, x)
-y

julia> Symbolics.solve_for([x + y ~ 0, x - y ~ 2], [x, y])
2-element Vector{Float64}:
  1.0
 -1.0
source
Symbolics.degreeFunction
degree(p, sym=nothing)

Extract the degree of p with respect to sym.

Examples

julia> @variables x;

julia> Symbolics.degree(x^0)
0

julia> Symbolics.degree(x)
1

julia> Symbolics.degree(x^2)
2
source
Symbolics.coeffFunction
coeff(p, sym=nothing)

Extract the coefficient of p with respect to sym. Note that p might need to be expanded and/or simplified with expand and/or simplify.

Examples

julia> @variables a x y;

julia> Symbolics.coeff(2a, x)
0

julia> Symbolics.coeff(3x + 2y, y)
2

julia> Symbolics.coeff(x^2 + y, x^2)
1
source
Base.replaceFunction
replace(expr::Symbolic, rules...)

Walk the expression and replace subexpressions according to rules. rules could be rules constructed with @rule, a function, or a pair where the left hand side is matched with equality (using isequal) and is replaced by the right hand side.

Rules will be applied left-to-right simultaneously, so only one pattern will be applied to any subexpression, and the patterns will only be applied to the input text, not the replacements.

Set fixpoint = true to repeatedly apply rules until no change to the expression remains to be made.

source
Base.occursinFunction
occursin(c, x)

Returns true if any part of x fufills the condition given in c. c can be a function or an expression. If it is a function, returns true if x is true for any part of x. If c is an expression, returns true if x contains c.

Examples:

@syms x y
Symbolics.occursin(x, log(x) + x + 1) # returns `true`.
Symbolics.occursin(x, log(y) + y + 1) # returns `false`.
@variables t X(t)
D = Differential(t)
Symbolics.occursin(Symbolics.is_derivative, X + D(X) + D(X^2)) # returns `true`.
source
occursin(needle::Symbolic, haystack::Symbolic)

Determine whether the second argument contains the first argument. Note that this function doesn't handle associativity, commutativity, or distributivity.

source
Symbolics.filterchildrenFunction

filterchildren(c, x) Returns all parts of x that fufills the condition given in c. c can be a function or an expression. If it is a function, returns everything for which the function is true. If c is an expression, returns all expressions that matches it.

Examples:

@syms x
Symbolics.filterchildren(x, log(x) + x + 1)

returns [x, x]

@variables t X(t)
D = Differential(t)
Symbolics.filterchildren(Symbolics.is_derivative, X + D(X) + D(X^2))

returns [Differential(t)(X(t)^2), Differential(t)(X(t))]

source
Symbolics.fixpoint_subFunction
fixpoint_sub(expr, dict; operator = Nothing)

Given a symbolic expression, equation or inequality expr perform the substitutions in dict recursively until the expression does not change. Substitutions that depend on one another will thus be recursively expanded. For example, fixpoint_sub(x, Dict(x => y, y => 3)) will return 3. The operator keyword can be specified to prevent substitution of expressions inside operators of the given type.

See also: fast_substitute.

source
Symbolics.fast_substituteFunction
fast_substitute(expr, dict; operator = Nothing)

Given a symbolic expression, equation or inequality expr perform the substitutions in dict. This only performs the substitutions once. For example, fast_substitute(x, Dict(x => y, y => 3)) will return y. The operator keyword can be specified to prevent substitution of expressions inside operators of the given type.

See also: fixpoint_sub.

source