Expression Manipulation
Symbolics.jl provides functionality for easily manipulating expressions. Most of the functionality comes by the expression objects obeying the standard mathematical semantics. For example, if one has A a matrix of symbolic expressions wrapped in Num, then A^2 calculates the expressions for the squared matrix. In that sense, it is encouraged that one uses standard Julia for performing a lot of the manipulation on the IR, as, for example, calculating the sparse form of the matrix via sparse(A) is valid, legible, and easily understandable to all Julia programmers.
Functionality Inherited From SymbolicUtils.jl
SymbolicUtils.substitute — Functionsubstitute(expr, s)Performs the substitution on expr according to rule(s) s.
Examples
julia> @variables t x y z(t)
4-element Vector{Num}:
t
x
y
z(t)
julia> ex = x + y + sin(z)
(x + y) + sin(z(t))
julia> substitute(ex, Dict([x => z, sin(z) => z^2]))
(z(t) + y) + (z(t) ^ 2)SymbolicUtils.simplify — Functionsimplify(x; expand=false,
threaded=false,
thread_subtree_cutoff=100,
rewriter=nothing)Simplify an expression (x) by applying rewriter until there are no changes. expand=true applies expand in the beginning of each fixpoint iteration.
Additional Manipulation Functions
Other additional manipulation functions are given below.
Symbolics.get_variables — Functionget_variables(O) -> Vector{Union{Sym, Term}}Returns the variables in the expression. Note that the returned variables are not wrapped in the Num type.
Examples
julia> @variables t x y z(t)
4-element Vector{Num}:
t
x
y
z(t)
julia> ex = x + y + sin(z)
(x + y) + sin(z(t))
julia> Symbolics.get_variables(ex)
3-element Vector{Any}:
x
y
z(t)Symbolics.tosymbol — Functiontosymbol(x::Union{Num,Symbolic}; states=nothing, escape=true) -> SymbolConvert x to a symbol. states are the states of a system, and escape means if the target has escapes like val"y(t)". If escape is false then it will only output y instead of y(t).
Examples
julia> @variables t z(t)
2-element Vector{Num}:
t
z(t)
julia> Symbolics.tosymbol(z)
Symbol("z(t)")
julia> Symbolics.tosymbol(z; escape=false)
:zSymbolics.diff2term — Functiondiff2term(x::Term) -> Symbolic
diff2term(x) -> xConvert a differential variable to a Term. Note that it only takes a Term not a Num.
julia> @variables x t u(x, t); Dt = Differential(t); Dx = Differential(x);
julia> Symbolics.diff2term(Symbolics.value(Dx(Dt(u))))
uˍtx(x, t)Symbolics.solve_for — Functionsolve_for(eq, var; simplify, check) -> Any
Solve equation(s) eqs for a set of variables vars.
Assumes length(eqs) == length(vars)
Currently only works if all equations are linear. check if the expr is linear w.r.t vars.
Examples
julia> @variables x y
2-element Vector{Num}:
x
y
julia> Symbolics.solve_for(x + y ~ 0, x)
-y
julia> Symbolics.solve_for([x + y ~ 0, x - y ~ 2], [x, y])
2-element Vector{Float64}:
1.0
-1.0