Expression Manipulation
Symbolics.jl provides functionality for easily manipulating expressions. Most of the functionality comes by the expression objects obeying the standard mathematical semantics. For example, if one has A
a matrix of symbolic expressions wrapped in Num
, then A^2
calculates the expressions for the squared matrix. It is thus encouraged to use standard Julia for performing many of the manipulation on the IR. For example, calculating the sparse form of the matrix via sparse(A)
is valid, legible, and easily understandable to all Julia programmers.
Functionality Inherited From SymbolicUtils.jl
SymbolicUtils.substitute
— Functionsubstitute(expr, s; fold=true)
Performs the substitution on expr
according to rule(s) s
. If fold=false
, expressions which can be evaluated won't be evaluated.
Examples
julia> @variables t x y z(t)
4-element Vector{Num}:
t
x
y
z(t)
julia> ex = x + y + sin(z)
(x + y) + sin(z(t))
julia> substitute(ex, Dict([x => z, sin(z) => z^2]))
(z(t) + y) + (z(t) ^ 2)
julia> substitute(sqrt(2x), Dict([x => 1]); fold=false)
sqrt(2)
SymbolicUtils.simplify
— Functionsimplify(x; expand=false,
threaded=false,
thread_subtree_cutoff=100,
rewriter=nothing)
Simplify an expression (x
) by applying rewriter
until there are no changes. expand=true
applies expand
in the beginning of each fixpoint iteration.
By default, simplify will assume denominators are not zero and allow cancellation in fractions. Pass simplify_fractions=false
to prevent this.
Documentation for rewriter
can be found here, using the @rule
macro or the @acrule
macro from SymbolicUtils.jl.
Additional Manipulation Functions
Other additional manipulation functions are given below.
Symbolics.get_variables
— Functionget_variables(e, varlist = nothing; sort::Bool = false)
Return a vector of variables appearing in e
, optionally restricting to variables in varlist
.
Note that the returned variables are not wrapped in the Num
type.
Examples
julia> @variables t x y z(t);
julia> Symbolics.get_variables(x + y + sin(z); sort = true)
3-element Vector{SymbolicUtils.BasicSymbolic}:
x
y
z(t)
julia> Symbolics.get_variables(x - y; sort = true)
2-element Vector{SymbolicUtils.BasicSymbolic}:
x
y
Symbolics.tosymbol
— Functiontosymbol(x::Union{Num,Symbolic}; states=nothing, escape=true) -> Symbol
Convert x
to a symbol. states
are the states of a system, and escape
means if the target has escapes like val"y(t)"
. If escape
is false, then it will only output y
instead of y(t)
.
Examples
julia> @variables t z(t)
2-element Vector{Num}:
t
z(t)
julia> Symbolics.tosymbol(z)
Symbol("z(t)")
julia> Symbolics.tosymbol(z; escape=false)
:z
Symbolics.diff2term
— Functiondiff2term(x, x_metadata::Dict{Datatype, Any}) -> Symbolic
Convert a differential variable to a Term
. Note that it only takes a Term
not a Num
. Any upstream metadata can be passed via x_metadata
julia> @variables x t u(x, t) z(t)[1:2]; Dt = Differential(t); Dx = Differential(x);
julia> Symbolics.diff2term(Symbolics.value(Dx(Dt(u))))
uˍtx(x, t)
julia> Symbolics.diff2term(Symbolics.value(Dt(z[1])))
var"z(t)[1]ˍt"
Symbolics.degree
— Functiondegree(p, sym=nothing)
Extract the degree of p
with respect to sym
.
Examples
julia> @variables x;
julia> Symbolics.degree(x^0)
0
julia> Symbolics.degree(x)
1
julia> Symbolics.degree(x^2)
2
Symbolics.coeff
— Functioncoeff(p, sym=nothing)
Extract the coefficient of p
with respect to sym
. Note that p
might need to be expanded and/or simplified with expand
and/or simplify
.
Examples
julia> @variables a x y;
julia> Symbolics.coeff(2a, x)
0
julia> Symbolics.coeff(3x + 2y, y)
2
julia> Symbolics.coeff(x^2 + y, x^2)
1
julia> Symbolics.coeff(2*x*y + y, x*y)
2
Missing docstring for Symbolics.replace
. Check Documenter's build log for details.
Base.occursin
— Functionoccursin(needle::Symbolic, haystack::Symbolic)
Determine whether the second argument contains the first argument. Note that this function doesn't handle associativity, commutativity, or distributivity.
Symbolics.filterchildren
— Functionfilterchildren(c, x)
Returns all parts of x
that fulfills the condition given in c. c can be a function or an expression. If it is a function, returns everything for which the function is true
. If c is an expression, returns all expressions that matches it.
Examples:
@syms x
Symbolics.filterchildren(x, log(x) + x + 1)
returns [x, x]
@variables t X(t)
D = Differential(t)
Symbolics.filterchildren(Symbolics.is_derivative, X + D(X) + D(X^2))
returns [Differential(t)(X(t)^2), Differential(t)(X(t))]
Symbolics.fixpoint_sub
— Functionfixpoint_sub(expr, dict; operator = Nothing, maxiters = 1000)
Given a symbolic expression, equation or inequality expr
perform the substitutions in dict
recursively until the expression does not change. Substitutions that depend on one another will thus be recursively expanded. For example, fixpoint_sub(x, Dict(x => y, y => 3))
will return 3
. The operator
keyword can be specified to prevent substitution of expressions inside operators of the given type. The maxiters
keyword is used to limit the number of times the substitution can occur to avoid infinite loops in cases where the substitutions in dict
are circular (e.g. [x => y, y => x]
).
See also: fast_substitute
.
Symbolics.fast_substitute
— Functionfast_substitute(expr, dict; operator = Nothing)
Given a symbolic expression, equation or inequality expr
perform the substitutions in dict
. This only performs the substitutions once. For example, fast_substitute(x, Dict(x => y, y => 3))
will return y
. The operator
keyword can be specified to prevent substitution of expressions inside operators of the given type.
See also: fixpoint_sub
.
Symbolics.symbolic_to_float
— Functionsymbolic_to_float(x::Union{Num, BasicSymbolic})::Union{AbstractFloat, BasicSymbolic}
If the symbolic value is exactly equal to a number, converts the symbolic value to a floating point number. Otherwise retains the symbolic value.
Examples
symbolic_to_float((1//2 * x)/x) # 0.5
symbolic_to_float((1/2 * x)/x) # 0.5
symbolic_to_float((1//2)*√(279//4)) # 4.175823272122517